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Nature and importance of Information

Distinctive features of Quantum Information
Superposition principle, imperfect distinguishability,  
no-cloning
Entanglement—an intense monogamous kind of 
correlation
Multiple distinct channel capacities: quantum, private, 
classical, entanglement-assisted…

Feats and Achievements, Challenges and Puzzles

Importance as basic science and for science 
education



Nature and Importance of Information 

Information and Computation Theory was 
developed by considering bits and logic gates 
abstractly, ignoring the nature of the information 
carriers and the mechanisms of their interaction. 

Our information society is built on the success of 
this abstraction

( Information Theory |   Computation Theory )

distributed computation
cf Broadbent, Watrous talks



But the correct arena for making this 
abstraction is quantum, not classical

Recasting the classical theory in this way yields 

• Dramatic speedups of some classically hard 
computations 

• New kinds of communication and measurement 

• New encryption techniques and breaking of some 
old ones.

• An exciting area of basic science



Between any two reliably distinguishable 
states of a quantum system 
(for example horizontally and vertically polarized single photons)

there exists a continuum of intermediate states (representable 
as complex linear combinations of the original states) that in 
principle cannot be reliably distinguished from either original 
state. 
(for example diagonal polarizations)
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Any quantum data processing 

can be done by  1- and 2-qubit 

gates acting on qubits.

The 2-qubit XOR or "controlled-NOT" gate flips its 

2nd input if its first input is 1, otherwise does nothing.

A superposition of inputs gives a superposition of outputs.

An   or EPR tate.  
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Expressing classical data processing in quantum terms.

A classical bit is just a qubit with one 
of the Boolean values    0    or   1.

A classical wire is a quantum channel that conducts  0 and 1
faithfully, but randomizes superpositions of  0  and  1.

(This occurs because the data passing 
through the wire interacts with its environment, 
causing the environment to learn the value of 
the data, if it was 0  or  1, and otherwise 
become entangled with it.)
  
A classical wire is a quantum wire 
with an eavesdropper.  

A classical circuit is a quantum circuit
with eavesdroppers on all its wires.

Information
(Classical)

Quantum Information

A classical channel is a quantum 
channel with an eavesdropper.

A classical computer is a quantum 
computer handicapped by having 
eavesdroppers on all its wires. 



Entanglement is an intense and private kind of correlation 

• A pure quantum whole can have impure parts, whereas 
classically a whole can be no purer than its most impure part.
• Monogamy: If A and B are maximally entangled with each other, 
they cannot be even classically correlated with anything else. 
• Indeed classical correlation typically arises from unsuccessful
attempts to clone entanglement.

Two is a couple, three is a crowd.

|0〉

|0〉

entangled only classically correlated
ψ



Entanglement is a quantifiable nonlocal resource that 
can be harvested from physical systems, distilled into 
standard form (“ebits”) and used for various purposes 
such as entanglement-assisted communication. 

Though having no communication capacity of its own, 
entanglement can

• allow quantum information to be transmitted through 
a classical channel

• increase a quantum channel’s capacity for 
transmitting classical information.  

• improve the precision of measurement



In classical information theory, a channel has a single capacity, and 
its capacity is not increased by auxiliary resources such as shared 
randomness between sender and receiver, or back communication 
(feedback) from receiver to sender

CR=CB=C

(However shared randomness, in the form of a one-time pad, 
makes it possible to communicate secretly over a public channel. 
Back communication, though it doesn’t increase capacity, 
reduces encoding/decoding effort and latency.)

Moreover (for memoryless channels) the classical capacity is given 
by a simple single-letter formula, being the maximum, over source 
distributions, of the Shannon mutual information between input and 
output.   
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An important goal of quantum information theory is to understand the 
nonlocal resources, and tradeoffs among them, needed to transform one 
state of a multipartite system into another, when local operations are 
unlimited. 

unlimited local operations

unlimited local operations



These questions can be asked in an exact setting

Q(ρ)ρ

or in the regularized IID setting characteristic of information theory, where 
one seeks to transform many copies of the input state into a high-fidelity 
approximation to many copies of the desired output state

≈ Q(ρ) ⊗n
ρ⊗n

By appropriate choice of the transformation Q which one seeks to 
implement (a completely positive trace preserving map on multipartite 
states), one can define state properties like distillable entanglement, 
and many sorts of channel capacity



Q   plain quantum capacity = qubits faithfully trasmitted per channel use, 
       via quantum error correcting codes

C   plain classical capacity = bits faithfully trasmitted per channel use 

QB   quantum capacity assisted by classical back communication
Q2   quantum capacity assisted by classical two-way communication

CE     entanglement assisted classical capacity i.e. bit capacity in the 
         presence of unlimited prior entanglement between sender and
         receiver.

Multiple capacities of Quantum Channels

Bob

AliceAlice
Noisy quantum channel

For quantum channels, these assisted capacities can be greater than the 
corresponding unassisted capacities.

P capacity for sending classical bits privately when Eve holds Environment

Q ≤ P ≤ C
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Mostly Frustrating Search 
for Simple Expressions for 
the various Capacities 

LSD

Regularization needed---Hastings 2008

BSST01

n→∞ {px ,ρx}regularized
C = Holevo cap. =  lim max (S(N⊗n(ρ)) −Σpx S(N⊗n (ρx)))/n

n→∞ ρregularized
Q = Coherent Info. =  lim max (S(N⊗n(ρ)) −S(E⊗n(ρ)))/n

ρ
CE = Quantum Mutual Info. = max  S(ρ) + S(N(ρ)) −S(E(ρ))

Superactivation: ∃M,N Q(M)=Q(N)=0  but Q(M⊗N)>0 SY08

No good expressions for  Q2 , QB

P = Private cap. =  lim max  (I(X;N⊗n (ρx)) - I(X;E⊗n (ρx)))/nn→∞ {px ,ρx} Devetak quant-ph/0304127

(reg. not needed)
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Erasure Probability

Capacities of Quantum Erasure Channel

Quantum Erasure Channel

input qubit sometimes lost 

Simple illustrative example

P,
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Because of this its unassisted quantum capacity Q must be zero.
If this were not the case, the splitter could be used together with an 
encoder and two decoders to clone unknown quantum states.

Symmetric
Splitter

50%
Erasure
channel

A 50% erasure channel can be viewed as one output of a 
symmetric splitter.  



But when assisted by classical communication or shared 
entanglement, the 50% erasure channel acquires a nonzero 
quantum capacity:

With Classical 2-way communication 
• Alice uses the erasure channel to send Bob halves of EPR pairs.
• Bob reports back classically which ones arrived successfully.
• Alice uses these and forward classical communication to teleport 
the quantum input to Bob 

With Shared Entanglement
• With the help of ordinary Shannon coding, Alice uses the erasure 
channel’s forward classical capacity (50%) to send Bob the 
classical bits needed for teleportation.  They already have the other 
resource required, viz Alice-Bob entanglement. 

With Classical Back Communication alone 
• Combine the two constructions above 



Another Useful Assistive Resource: the 50% Quantum Erasure 
Channel itself, or more generally, “symmetric side channels”, viz any 
channel that can be viewed as one output of a symmetric splitter.  Such 
channels have no quantum capacity Q, so one can define the assisted 
capacity 

Qss = Symmetric side channel-assisted Quantum Capacity 
(G.Smith, J.Smolin, A.Winter IEEE-IT, quant-ph/0607039)

Smith and Yard (arXiv/0807.4935) showed a nice relation between 
private classical capacity and this assisted quantum capacity, 
namely that for all channels, P ≤ 2Qss

K.,M.and P.Horodecki and J.Oppenheim had previously (quant-
ph/0506189) found channels with Q = 0 but P > 0.  Combining these 
facts Smith and Yard obtained the surprising result:

There exist pairs of channels, each with no quantum capacity, 
which have positive quantum capacity when used together:
Q(M)=Q(N)=0  but Q(M⊗N)>0



PPT = Positive Partial Transpose-enforcing channels (e.g. Horodecki)
EB = Entanglement-breaking channels
AD = Antidegradable channels, such as the 50% erasure channel

The set of Zero-Quantum-Capacity channels is not convex

• Is privacy necessary for superactivation of quantum capacity?
• Is there a third sex, i.e. a third incomparable kind of zero-
quantum capacity channel that can superactivate one or more of 
the other kinds?
• Is private capacity superactivatible?  (Need nontrivial upper 
bound on P)



Additivity Status of Some Capacities 
and Single-Letter Correlation Measures

Entanglement
assisted

Yes
Yes Quantum Mutual

Information 
max  S(B)+S(BE) −S(E)

[BSST 01]



With all these capacities, complicated formulas, and 
especially the ability of zero-quantum-capacity channels 
to superactivate one another, quantum capacity theory is 
beginning to look ugly.    

But there are also some results that make it begin to look 
simple again.

• Entanglement-assisted capacity 

• Approximate Randomization and Data Hiding

• Reversible State Redistribution
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Entanglement-Assisted capacity CE of a quantum channel N is equal to 
the maximum, over channel inputs ρ, of the input (von Neumann) entropy 
plus the output entropy minus their “joint” entropy

CE (N) = maxρ S(ρ)  + S(N(ρ)) − S(N⊗I(Φρ))

(entangled 
purification 
of  ρ)

(more precisely the 
joint entropy of the output and a reference system entangled with the late 
input) (BSST 0106052, Holevo 0106075).  

In retrospect, entanglement-assisted capacity, not plain classical capacity,  is 
the natural quantum generalization of the classical capacity of a classical 
channel.  What Shannon actually found in 1948 was a nice formula for the 
entanglement-assisted capacity of a classical channel.

QE = CE / 2  for all channels, by teleportation & superdense coding.



Private Quantum Channels and Approx. Randomization

It is well known that two random key bits are necessary and sufficient to 
perfectly encrypt a qubit, so that regardless of the input ψ, the 
intermediate “ciphertext” looks completely mixed.  

ZX Z Xψ ψ
ρ

r1
r2

perfectly mixed1 qubit state

Uk
ψ ψ

ρ

≈ n bit 
key  k

almost perfectly mixedn qubit state
Uk

-1

But if we are willing to settle for asymptotically perfect encryption, 
then in the limit of large block size, only half as much key is needed. 



Uk
ψ ρ

≈ n bit 
key k

almost perfectly mixedn qubit state

Curiously, this encryption, while hiding pure states almost perfectly, does not 
hide entangled states well at all.  (Hayden, Leung, Shor, Winter 0307104)

Uk
ρ

almost perfectly mixed

Ψ } 
Entangled
2n qubit 
state

Very dependent
on Ψ  because 
support dimension 
is only ≈2n

≈ n bit 
key k



Data Hiding:  A multipartite state which stores classical data 
that can be recovered by a joint measurement, but not by any 
sequence of local measurements and classical communication. 
Like 2 locked boxes each chained to the other’s key .

Uk
ρ

almost perfectly mixed

Ψ } Resulting 2n qubit 
bipartite mixed state
Hides nearly n bits of 
classical data

Random k Discard
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I(C;A)/2
Ebits in

I(C;B)/2
Ebits out

I(C;R|B)/2 
=I(C;R|A)/2 

Qubits sent

Quantum State Redistribution: Reversibly transforming iid tripartite 
pure state  (AC | B | R)  into (A | CB | R) by local actions, quantum 
communication, and shared entanglement.  R is a passive reference 
system. (recent work by Devetak & Yard, Oppenheim)
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Some Quantum Information Feats and Successes

• Quantum Cryptography 
• Quantum Key Distribution (Lütkenhaus talk)
• No-go theorem for bit commitment and post-cold-war 
cryptography (but can do it with limits on q memory)

• Quantum Error Correction
• Quantum Error Correcting Codes
• Entanglement Distillation Protocols
• Fault Tolerant computation (Preskill talk) 

• Entanglement-assisted protocols
• teleportation and superdense coding 
• entangled illumination (Lloyd, Shapiro cf. e.g. 0904.2490)
• entanglement-assisted measurement (Wineland talk)



Quantum Information as Basic Science

A simpler view of information, interaction, and correlation, 
applicable to computer science, physics, and education

• Classically there are many incomparable kinds of 
interaction; quantumly there is only one kind, which can 
generate entanglement or communicate in either direction. 

• Quantum origin of classical behavior (3 is a crowd)

• Entanglement and black hole thermodynamics (e.g. Hayden, 
Preskill)  

• QIS is a subject undergraduates are excited about, 
challenging teachers to dispel the mystery and guide their 
enthusiasm



Some Quantum Information Theory Challenges

• Additivity and Superactivation Questions – How many 
sexes?  

• Alternatives to LOCC (local operations and classical 
communication) as a possibly simpler regime for a 
resource-based theory of quantum communication 

• Understand Capacities better, especially the most poorly 
characterized ones like Q2 and P.

• Multipartite Communication and Entanglement Theory:  
Quantum Multiple Access and Broadcast Channels. 

• Better Error correction and distillation protocols, especially 
as enablers for fault tolerant quantum computation.


