Universal Blind Quantum Computation

Anne Broadbent (Institute for Quantum Computing, University of Waterloo) with Joseph Fitzsimons (Oxford) Elham Kashefi (Edinburgh)

- The year is 20??. A few centers around the world have managed to build quantum computers.
- They allow users to have remote access to their quantum computers.

Interactive proofs

...how useful is a cheating oracle?

A language L is in IP if there exists a verifier such that:

•If the answer is "yes", the prover must be able to behave in such a way that the verifier accepts with probability at least 2/3

•If the answer is "no", then however the prover behaves, the verifier must reject with probability at least 2/3.

IP = **PSPACE** (Shamir, Lund-Fortnow-Karloff-Nisan 1990)

A language L is in QIP if there exists a verifier such that:

•If the answer is "yes," the prover must be able to behave in such a way that the verifier accepts with probability at least 2/3 •If the answer is "no," then however the prover behaves the verifier must reject with probability at least 2/3.

•PSPACE is in QIP[3] (Watrous 1999)
•QIP[k] = QIP[3] = QIP (k >= 3) (Kitaev-Watrous 2000).

•Open question: Does **QIP** strictly contain **IP** (i.e. does quantum computation add any power to interactive proofs?)

Open question: what is the power of this type of scenario?

$IP_{BQP} \stackrel{?}{=} BQP$

Our contribution: we give solutions to closely related problems:

- 1. Almost-classical verifier (has the additional power of generating random qubits from a fixed finite set): $IP_{BQP}^{|\theta\rangle} = BQP$ Characterize the power of left set in the power set in the powe
- Purely classical verifier, with two BQP provers that cannot communicate but that share entanglement MIP*_BQP = BQP

...what can be accomplished in the presence of an adversary?

Cryptography

- Quantum key distribution (QKD) (Bennett-Brassard 1984)
- Impossibility of Bit Commitment (Mayers, Lo-Chau 1995)
- Private Quantum Channels (Ambainis-Mosca-Tapp-de Wolf 2000)
- Quantum Authentication (Barnum-Crépeau-Gottesman-Smith-Tapp 2002)
- Multi-party computation (Ben-Or-Crépeau-Gottesman-Hassidim-Smith 2006)
- Cryptography in the bounded quantum-storage model (Damgard-Fehr-Salvail-Schaffner 2005)

Motivations

Factoring

- Using Shor's algorithm, Alice can use Bob to help her factor an integer corresponding to an RSA public key
 - Bob won't learn whose private key he is breaking; in fact he won't even know that he is helping Alice factor.

BQP-Complete problem

No known efficient method to verify solution: we therefore give a method to authenticate Bob's computation.

Processing quantum information

Blind state preparation, blind measurement...

Previous work

Blind quantum computation

quant-ph/0309152

Pablo Arrighi^{1, *} and Louis Salvail^{2, †}

¹Laboratoire Leibniz, Institut d'Informatique et de Mathématiques Appliquées de Grenoble (IMAG), CNRS UMR 5522, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France. ²BRICS, Department of Computer Science, University of Aarhus, Building 540, Ny Munkegade, Aarhus C-8000, Denmark.

- Publicly-known classical random-verifiable function
- Alice needs to be able to prepare and measure multi-qubit states
- Provides only cheat sensitivity

arXiv:quant-ph/0111046

MIT-CTP #3211 Secure assisted quantum computation Andrew M. Childs* Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 02139, USA (7 November 2001)

- Alice needs a <u>quantum memory</u>, and the ability to perform Pauli gates $x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Idea: she sends encrypted qubits to Bob who applies a known gate. Alice can decrypt the qubits while preserving the action of the gate. Repeat, cycling through universal set of gates. $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right), \pi/8 = \left(\begin{array}{cc} 1 & 0 \\ 0 & \sqrt{i} \end{array} \right), CNOT = \left(\begin{array}{ccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

- Interactive proof with BQP prover, and nearlyclassical verifier.
 - Verifier has a constant-size quantum computer
 - Protocol is also *blind*.

Our solution

Blind protocols that show:

$$BQP = IP_{BQP}^{|\theta\rangle}$$

$$BQP = MIP_{BQP}^{*}$$

Our technique

 Derived from <u>Measurement Based</u> quantum computing (MBQC)

[Raussendorf and Briegel, 2001]

First time that a new functionality is achieved in MBQC.

The MBQC paradigm

Qubits are measured layer-by-layer...

Getting rid of {|0>, |1>} -basis measurements

- We want to get rid of computational basis measurements that reveal the structure of underlying circuit
- We'll show that

yields universal set of gates: CNOT, H, and $\pi/8$

 Tilling the 2-qubit gate allows multiple inputs and multiple gates

Getting rid of {|0>, |1>} -basis measurements

20

Getting rid of {|0>,|1>} -basis measurements The *brickwork* states

2-qubit circuit

n-qubit circuit...

All measurements are integer multiples of $\frac{\pi}{4}$.

Privacy

 Intuitively, we want that from Bob's point of view, all information received from Alice is independent of Alice's input X.

$\pi\kappa \Omega\alpha\beta\delta\psi\phi\delta\ldots$

- Bob does learn the dimensions of the brickwork state, giving an upper bound on the size of Alice's computation. He may also have some prior knowledge on X.
- Hence, we need to prove that Bob's view of the protocol does not depend on X, given his prior knowledge.

Greek to

Privacy

Formally:

We say that a protocol is *blind while leaking at most L(X)* if for any fixed **Y=L(X)**, the following two hold when given **Y**:

- 1. The distribution of the classical information obtained by Bob is independent of **X**.
- The state of the quantum system obtained by Bob is fixed and independent both of X and of the distribution of the classical information above.
- Theorem: Our protocol is blind, while leaking at most the dimensions of the brickwork state.

Detecting an interfering Bob

- Double the number of wires, randomly adding N/2 wires in |0> and N/2 wires in |1>.
- An actively interfering Bob is caught with probability at least ½. Repeat s times.
- We also have a fault-tolerant version that additionally provides authentication for quantum inputs and outputs.

For classical

outputs that

cannot easily

be verified

The blind protocol is as an interactive proof for any problem in BQP.

It follows:

 $\mathsf{BQP} \subseteq \mathsf{IP}_{\mathsf{BQP}}^{|\theta\rangle}$

Trivially,

 $\mathsf{BQP}\supseteq\mathsf{IP}_{\mathsf{BQP}}^{|\theta\rangle}$

Hence,

 $BQP = IP_{BQP}^{|\theta\rangle}$

Multi-prover interactive proofs

Open questions

Is quantum communication required for blind quantum computation?

$$IP_{BQP} \stackrel{?}{=} BQP$$

